

Pergamon Tetrahedron Letters 42 (2001) 5005–5007

TETRAHEDRON LETTERS

Ruthenium-catalyzed asymmetric reduction of 1,3-diketones using transfer hydrogenation

Janine Cossy,* Florence Eustache and Peter I. Dalko

Laboratoire de Chimie Organique associe´ au CNRS, *ESPCI*, 10 *rue Vauquelin*, 75231 *Paris Cedex* 05, *France* Received 7 May 2001; accepted 26 May 2001

Abstract—1,3-Diketones were reduced to 1,3-diols by using RuCl[*N*-(tosyl)-1,2-(diphenylethylenediamine) (n⁶-arene)] in the presence of formic acid and triethylamine. 1,3-Diols were obtained in good chemical yields and with high ee when symmetrical diketones were reduced. © 2001 Elsevier Science Ltd. All rights reserved.

Catalytic asymmetric hydrogenation using chiral ruthenium complexes is a powerful method of producing chiral alcohols and amines with excellent enantioselectivity.1 Highly efficient chiral diamine-based Ru(II) catalysts such as RuCl[*N*-(arylsulfonyl) cyclohexyl-1,2-diamine) (⁶ -arene)] or RuCl[*N*-(arylsulfonyl)-1,2- (diphenylethylenediamine) $(\eta^6$ -arene)] complexes have been developed either for catalytic hydrogenation under H₂ pressure or transfer hydrogenation using 2-propanol or formic acid.2 Here, we report a practical asymmetric reduction of 1,3-diketones to the corresponding 1,3 diols with good diastereo- and enantioselectivities, using a catalytic amount of RuCl[(*N*-arylsulfonyl)-1,2 diamine (*p*-cymene)] complexes **A**–**D** in the presence of $Et₃N$ and formic acid (Schemes 1 and 2).

The reduction of 1,3-diphenyl-1,3-propanedione $1a(R¹)$ and $R^2 = Ph$) with catalyst **A** (0.05 equiv.) in the presence of $Et₃N$ (2.0 equiv.) and formic acid (5.0 equiv.) in $CH₂Cl₂$, DMF or under solvent free conditions afforded an inseparable mixture of *anti*- and *syn*-1,3 diols **2a** and **3a**. The products were transformed to the corresponding ketals **4a** and **5a** that were separated. The enantiomeric purity of ketal **4a**, and consequently of diol **2a**, was established by chiral HPLC.3 The absolute configurations of the newly formed stereocenters were determined by X-ray diffraction of the corresponding Mosher's esters.⁴ According to these results the (*S*,*S*)-**A** complex gives rise to the (*S*,*S*)-diol **2a**. The results are summarized in Table 1.

The influence of solvent and temperature on the selectivity of the reaction was examined using catalyst **A** (Table 1). Best results were obtained in CH_2Cl_2 at 25^oC (entry 2) and 50° C (entry 3). When the reaction was performed either in DMF (entry 4) or without solvent (entry 5), diols **2a** and **3a** were obtained in poor to modest yields. Although the rate of the reaction **Scheme 1.** increased with the temperature (entries 1–3), the com-

Scheme 2.

Keywords: 1,3-diketones; 1,3-diols; reduction; ruthenium; catalyst. * Corresponding author. Fax: +33 (01)1 4079 46 60; e-mail: janine.cossy@espci.fr

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00906-6

Entry	Solvent	T (°C)	Time	Yield $(\frac{9}{6})^5$ (2a+3a)	dr(2a:3a)	ee $(\%)(4a)$
	CH_2Cl_2		4 days		____	___
$\overline{2}$	CH_2Cl_2	25	5 days	79	83:17	96
3	CH_2Cl_2	50	6 h	80	76:24	95
$\overline{4}$	DMF	40	3 days	12	73:27	95
5	None	25	3 days	63	71:29	96

Table 1. Reduction of 1,3-diketone **1a** in the presence of catalyst **A**

Table 2. Reduction of 1,3-diketone **1a** using catalysts (*S*,*S*)-**B**, **C** or **D**

Entry	Catalyst	T (°C)	Time (h)	Yield $(\frac{9}{6})^5$ (2a+3a)	dr(2a:3a)	ee $(\%)$ (4a)	Config. $(4a)$
	B	25	48	96	97:3	99.0	(S, S)
2	B	50	3.5	91	86:14	99.0	(S, S)
3	r ◡	25	72	48	98:2	99.7	(S, S)
$\overline{4}$	D	25	48	95	95:5	99.7	(S, S)
\mathcal{P}	D	50		83	98.5:1.5	99.8	(S, S)

bined yields of **2a**/**3a** as well as the diastereo- and enantioselectivity of the reaction were not affected considerably. According to these results, optimum conditions for the reduction of ketone **1a** $(dr = 76/24$; ee for the (d,l) compound $2a = 95\%$ are the use of CH_2Cl_2 at a temperature of 50°C. Hoping to improve the

Table 3. Reduction of ketones **1b–e** using catalyst (*S*,*S*)-**D**. Reaction conditions: CH₂Cl₂ at 50°C for 6 h

Entry	Starting material		Products (ee)		
$\mathbf 1$	Ω Ω 1 _b	OH OH (S) (S) \ast 2 _b	OH OH 3 _b	95/5	85
$\sqrt{2}$	O Ő 1 _c	OH OH (S) (R) 2c $(ee = 83%)$	ŌН ŌН 3 _c	58/42	79
$\mathsf 3$	1 _d	OH OH (S) (R) $2d^*$	OH OH 3d OH OH	57/43	91
$\overline{\mathbf{4}}$	O \circ 1e	OH ΟH (S) (S) 2e $(ee = 94.5%)$	3e OH OH Ē 3e'	2e/3e/3e' 70/15/15	55

* ee not determined.

diastereomeric ratio, we examined catalysts **B**, **C** and **D** in CH₂Cl₂ at 25 and 50 $^{\circ}$ C. The results are reported in Table 2.

As observed previously, the chemical yield as well as the diastero- and the enantioselectivity of the reduction of **1a** were not affected considerably by the temperature. The best dr and ee values were obtained using catalyst **D** in CH₂Cl₂ at 50°C (entry 5) (dr = 98.5/1.5, ee $(2a) = 99.8\%$). Consequently the enantioselective reduction of 1,3-diketones was generalized to substrates **1b**– **1e** under these conditions. The results are summarized in Table 3.

When the reduction of **1b** was effected with catalyst **D**, diols **2b** and **3b** were obtained in a ratio of 95/5 and with a yield of 85% (entry 1). Unfortunately, the ee of **2b** could not be determined at the diol stage or by transforming them to their corresponding ketals as they polymerized under acidic conditions. In the case of compound **1c**, diols **2c** and **3c** were isolated as a 58/42 mixture in 79% yield. The enantioselectivity of **2c** was measured from the corresponding ketals³ (83%) and the absolute configuration (*S*,*R*) of the newly created centers were assigned by comparing the optical rotation with the literature data.⁶

When dione **1d** was transformed to diols **2d** and **3d** using catalyst **D**, the products were obtained in high yield (91%) but the diastereoselectivity was low (dr= 57/43). When **1e** was reduced using catalyst **D** under standard conditions three products, **2e**, **3e** and **3e**, were isolated in 55% combined yield, in a ratio of 70/15/15. The enantiomeric excess of **2e** was measured from the corresponding ketal **4e** (ee=94.5%) using chiral HPLC.³ The absolute configuration of the newly created stereogenic centers were determined by X-ray diffraction of the corresponding Mosher's ester.⁴

It is worth noting that the reduction of symmetrically substituted 1,3-diaryl-1,3-diketones afforded diols of reasonably high dr and ee (up to 90%) compared to unsymmetrically substituted 1,3-diketones (i.e. when alkyl and aromatic group were present in the α -positions). The diastereomeric ratios of diols from these reductions were considerably lower (57/43 and 58/42). As chiral 1,3-diols are useful building blocks, their transformation to biologically active compounds is under investigation and the results will be reported in due course.

Acknowledgements

F.E. would like to thank Rhodia for a grant.

References

- 1. For a recent review, see: (a) Noyori, R.; Ohkuma, T. *Angew*. *Chem*., *Int*. *Ed*. **2001**, 40, 40–73. See also (b) Pai, C.-C.; Lin, C.-W.; Lin, C.-C.; Chen, C.-C.; Chan, A. S. C. *J. Am. Chem. Soc.* **2000**, 122, 11523–11514; (c) Genêt, J.-P.; Ratovelomanana-Vidal, V.; Pinel, C. *Synlett* **1993**, 478–480; (d) Ohkuma, T.; Doucet, H.; Pham, T.; Mikami, K.; Korenaga, T.; Terada, M.; Noyori, R. *J*. *Am*. *Chem*. *Soc*. **1998**, 120, 1086–1087; (e) Halle, R.; Schulz, E.; Spagnol, M.; Lemaire, M. *Synlett* **2000**, 680–682; (f) Krasik, P.; Alper, H. *Tetrahedron* **1994**, 50, 4347–4354; (g) Schwink, L.; Ireland, T.; Püntener, K.; Knochel, P. Tetra*hedron*: *Asymmetry* **1998**, 9, 1143–1163; (h) Ohkuma, T.; Ooka, H.; Yamakawa, M.; Ikariya, T.; Noyori, R. *J*. *Org*. *Chem*. **1996**, 61, 4872–4873; (i) Everaere, K.; Scheffler, J.-L.; Montreux, A.; Carpentier, J.-F. *Tetrahedron Lett*. **2001**, ⁴², 1899–1901; (j) Jung, H.; Koh, J. H.; Kim, M.-J.; Park, J. *Org*. *Lett*. **2000**, ², 2487–2490.
- 2. (a) Peng, Z.-H.; Woerpel, K. A. *Org*. *Lett*. **2001**, 3, 675– 678; (b) Koike, T.; Murata, K.; Ikariya, T. *Org*. *Lett*. **2000**, ², 3833–3836.
- 3. Columns: Daicel CHIRALCEL OJ and OD-H; solvents: hexane/2-propanol 50:50–99:1; flow rate: 0.2–0.6 mL/min; detection UV at 220 nm.
- 4. The Mosher's esters were prepared using (COCl), activation: Bergeron, R. J.; Müller, R.; Bussenius, J.; McManis, J. S.; Merriman, R. L.; Smith, R. E.; Yao, H.; Weimar, W. R. *J*. *Med*. *Chem*. **2000**, 43, 224–235.
- 5. Isolated yields. Satisfactory analytical data (¹H NMR, ¹³C NMR, MS) were obtained for all compounds.
- 6. Chan, T. H.; Nwe, K. T. *J*. *Org*. *Chem*. **1992**, ⁵⁷, 6107– 6111.